Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes.
نویسندگان
چکیده
Quantum dots defined in carbon nanotubes are a platform for both basic scientific studies and research into new device applications. In particular, they have unique properties that make them attractive for studying the coherent properties of single-electron spins. To perform such experiments it is necessary to confine a single electron in a quantum dot with highly tunable barriers, but disorder has prevented tunable nanotube-based quantum-dot devices from reaching the single-electron regime. Here, we use local gate voltages applied to an ultraclean suspended nanotube to confine a single electron in both a single quantum dot and, for the first time, in a tunable double quantum dot. This tunability is limited by a novel type of tunnelling that is analogous to the tunnelling in the Klein paradox of relativistic quantum mechanics.
منابع مشابه
Tunable double and triple quantum dots in carbon nanotube with local side gates.
We demonstrate a simple but efficient design for forming tunable single, double and triple quantum dots (QDs) in a sub-μm-long carbon nanotube (CNT) with two major features that distinguish this design from that of traditional CNT QDs: the use of i) Al2Ox tunnelling barriers between the CNT and metal contacts and ii) local side gates for controlling both the height of the potential barrier and ...
متن کاملHigh temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots
The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs). High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...
متن کاملHigh temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots
The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs). High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...
متن کاملSinglet–triplet physics and shell filling in carbon nanotube double quantum dots
An artificial two-atomic molecule, also called a double quantum dot (DQD), is an ideal system for exploring few-electron physics. Interactions between just two electrons have been explored in such systems using the singlet and triplet states as the two states in a quantum two-level system. An alternative and attractive material for studying spin-based two-level systems is the carbon nanotube (C...
متن کاملObservation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube
Two electrons on a string form a simple model system where Coulomb interactions are expected to play an interesting role. In the presence of strong interactions, these electrons are predicted to form a Wigner molecule, separating to the ends of the string. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet so far a direct measurement of such a spectrum in a c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2009